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Abstract: A new approach of determining cointegrating vectors based on the rank of covariance matrix of error

processes of ARIMA model is presented. By noting that, in practice, exactly cointegration behaviours rarely

exist, a new concept of asymptotic cointegration is introduced. Therefore a new procedure of determining asymp-

totic conitgration vectors is described in this paper. Under this procedure, the significance of the cointegration

behaviours can be easily identified.

1  Introduction

The analysis of long run equilibrium processes
among components of a given time series vector
under Univariate ARIMA type modelling has been
limited by two aspects. One is the lack of a rigor-
ous statistical definition for the concept of long run
equilibrivim and the other is the requirement for dif-
ferencing out long run dynamics to ensure station-
arity. The development of multivariate cointegra-
tion overcame these Hmitations by defining long run
equilibrium in terms of the existence of stationary
behaviour in linear combinations of series of inter-
est and by introducing techniques which obviate the
need for differencing.

Two fundamental issues in cointegration are the
problems of how to identify cointegration relation-
ships among titee series of interest and how 4o es-
timate the cointegration vector. Currently, sev-
eral procedures have been developed to solve these
issues. Among them two basic procedures are
the Engle-Granger two-step procedure and the Jo-
hansen’s procedure. The limitation of earlier cointe-
gration procedures based on the the Engle-Granger
{1987) approach to the identification of one inde-
pendent coingtegrating vector was overcome by the
Johansen {1988) maximum-liklihocod procedure for
identifying n independent cointegrating vectors.

By understanding Johansen's procedure (see Har-
ris, 1996), we realize that any application. of Jo-
hansen’s method for estimating cointegrating vec-
tors to real data must always be conditional upon
the independence condition or, at most, weak cor-
relation, between the summand I(0) series. The dif-
ficulty of checking these conditions in practice ne-
cessitates further unit root testing of all Johansen

type estimates of cointegrating vectors te ensure the
necessary conditions before they can be accepted as
eligible cointegrating veciors.

To overcome these difficulties, we now develop
an alternative approach for identifying and estimat-
ing cointegrating vectors based on a connection be-
tween univariate modetling processes and multivari-
ate cointegration. The application of such connec-
ticn to coiategration has not been discussed in lit-
erature.

In Section 2 it shows that there is an essential
relationship between cointegration and univeriate
ARIMA modelling and to suggest a new way to
identify cointegrating vectors by using the infor-
mation of covariance matrix of error proceses. A
new concept of ’asymptotic’ cointegration is given
in Section 3. Several simulated examples are pre-
sented in Section § to show the application of the
new approach and the new concept of ’asymptaotic’
cointegration.

2 Cointegrating Vectors and
Frror Processes

An alternative approach for identifying and esti-
mating cointegrating vectors may be found in the
inherent theoretical relationship between cointe-
grating vectors and the covariance matrix of error
processes. The idea used to establish such approach
is similar to that used by Bierens (1997) and Engle
and Yoo {1987), but the approach is different.

We first state the definitions of I(d) time series
and cointegration.

Definition 1 A time series X; is coelled o F(d) se-
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ries, if after d differencing, X, is stationary.

Definition 2 Let Xy be o I{d) time series vector,
d > 0. The time series vector Ky 15 said to be
cointegrated in order d —b > 0 for integer b, if there
is a vector 3 such that 87 X, is a I{d—b) time series
vector.

Definitions 1 and 2 are slightly different from
those given by Engle and Granger (1987) and
Granger and Weiss {1983). Our definition that X,
is I(d) does not requir that (1 — B)?X; is invertible.
This limitation is not significant since our only con-
cern is with the siationarity property of the relevant
time series.

For simplicity, we limit our discussion to the case
d=b=1.

First, éwo simple but basic lemmas are given be-
low, which will be used during the proof of the fol-
lowing theorems.

Lemuma 1 If &;(B) and 6;(B), i = 1,2 are finite-
order polynomial, and the roots of ¢;(B) = 0,
i = 1,2, are outside the complex unit circle,
then ¢7 L (B)8: (B)vy+ ¢35 {B)82(B)vy is stationary,
where v 18 an i.4.d series and B the back-shift op-
erator.

The proof of Lemma 1 is straightforward.
From Lemma 1, we can obtain the following
lernma

Lemma 2 Assume that Wy = C7HB)(B)v,,
where Cy(B) and Ca{B) are fwe malrices and
C1(B} is a diagonal matriz; {vi} are independent
and var(vy) is a dingonal matriz. If the roots of
det{C1(B)) = 0 lie outside the complex unit circle
and, C(B) and Cy(B) are finite-order lag polyno-
mials, then, for any vector £, ET W, is a stationary
process.

The relationship between the number of cointe-
grating vectors and the rank of covariance matrix
of error process is described by Theorems 1 and 2.

Theorem 1 Assume that Xy s o p x 1 I{1} time
series vector and each component of X, has the fol-
lowing expression:

@,(B)(l o B)X@'t = @i(B)fit (1)
where g are white noise, 1 = 1,2,---,p, both $,(5)
and ©;(B) are finite-order polynomial and hove

roots oubside the unit cirele. Assume, for any s # ,

Covler, ) = 8 and Var(e) = £ is free from t,
where e; = (€14, - ,ep,t)T. Ifrank(Z) =p—r < p,
then X has v > 0 cointegrating vectors.

Inversely, if X are cointegrated, then e will be
correlated, 1.e. rank{Z} < p.

Proof: First we prove that, if the rank{Z) =
p~7 < p, then X, has 7 > 0 cointegrating vectors.
Since the rank{Z} = p —r < p, shere is a nonsin-
gular matrix A such that
A D
0 )

where I} is a r x r zero matrix and A is a diagonal

Var(Ae,) = (

matrix containing all non zero eigenvalues of %

Let deg = vi = (v, 03,,---,05 )7 Thenv!, =

0,i=p—r+1,,p because Var{y},) = 0 for all
i > p—r + 1. Therefore
Vi
’ui“,t
. 41 ’U;f-r.t =
e = A Q. = (4, )

M U‘;f’ﬁ",t

0
where A;_, is a p X {p — ) matrix. Denote vy =
(CHPTEERR Up__r’t)T- Then v has mutually indepen-

dent components and

{1 - BYX; = C(B)vy,

where
®;'(B) 0
CR) = : %
0 oSHB)
©+(8) 0
o A;——r

0 9,(B)

Therefore,

B)
e MXD+(1—B)G(

UZ vi+ 01 Z

==l

= Xo~Wo + Wi +C(1 Z%

in which

C(B) = C(1)

1-B V. (2)
By noting that the rank of C(1) is equal to the rank
of A* . ie. p—r, there exist r vectors, say &, -,

P
£r, such that £5C{1) = 0,7 = 1,2,---,r. Thus

ETX; = & (Ko — Wa) + & W,

Wtﬁ
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From Lemma 2 and (2), §TW, is
stationary, for ail ¢ = 1,.-- r. This implies that
X, arc cointegrated with cointegrating vectors &;,

P 1,27

N G

Now we prove the inverse part indirectly. Assume
that X, are cointegrated, but {e;:} are indepen-
dent, fori=1,2,---,p.

Since X are cointegrated, there is a vector & =
(&5.85,--+,&)7 such that £7X, is I(0). By noting
that

(1-B}X;: =37 (B)0;(B)eyy,

ﬂ

we cbtain that
(1—B)& Xip = @7 (B)O;(B)E eiy,

i=1,2,--,p, then {£X;,;} are independent I(1)
series. Tt leads to €7 X, an I{1) time series. We
obtain contradiction. Thus {;;} have to be corre-
lated. O

The proof of Theorem 1 gives a procedure for de-
termining cointegrating vectors via the covariance
matrix of e;. The procedure consists the following
steps.

{i} Fit the individual time series of interest with a
ARIMA model and obtaining error processes;

{ii} identify the covartance matrix of the error pro-
cesses, 5

(iif) use eigenvectors to determine matrix A;_, (in
the proof of Theorem 1), if rank(Z} =p—1r <
D

(iv) determine all independent cointegrating vec-
tors by solving the equation £7 C'(1)= 0, where
(1) is defined in Theorem 1.

The following exampie demonstrates this proce-
dure.

Example 1 Consider two time series z, and y,
which satisfy the following models:
Es
Et ’

T {1 0
i - 0 1-0.2F8

where ¢; is white noise with variance 1. From the
model we have

=-e(2)-(20=(1 1)

which has eigenvalues 1 and 0. Thus

()-(4 075

-5 (

and

1_3).213)’0(1)5 ( 0%8 )

Let €T = (~0.8,1), then £TC(1) = 0 and W, =
(O,O.Qv{,i)T.

From Theorem 1, z; and y,; are cointegrated with
cointegrating vector £ = (0,0.2)7.

C(B) = (

Theorem 1 can be generalised as follows:.

Theorem 2 Assume that e is an p x 1 I{1) time
series vector and each component of Xt has the fol-
lowing expression:

®;(B)(1 ~ B)Xi = a; + 0;(Bjey

where ¢€; are white noise, i = 1,2,---, both @,(B)
and ©;(B) are finite-order polynomial and have
roots outside the unit circle. Assume, for any s # ¢,

Couvles,es) = O end Var{ey) = L is free from
t, where € = (€1, -, €pe)° . If the rank(Y) =
p -1 < p, then there are v vectors, say &, § =

1,2,---,7, such that &7 (X, - Agt) is a stationary
time series vector, where

37H(1) 0 a
0 @;1{1) ap

In the proof of Theorem 1, the structure of the
matrix (/{B} is special, where the rank of /(1) is
determined by the rank of A;ﬁr. A further interest-
ing questicn is whether there are any relationships
between cointegrating of X; and the rank of (1) if
the matrix C'(B) is an any p x p matrix. In general,
under some minor conditions, it can prove that X
are cointegrated iff the rank of C'(1) is less than p.
This result will be discussed in somewhere else.

3 The Asymptotic Cointegra-
tion Behaviours

In shis section, we discuss how to determine cointe-
gration behaviours among time series of interest in
practice via the procedure mentioned in Section 2.

Assume that time series X;,, ¢ =.1,2,---,p and
t = 1,2,---, have been correctly fitted by ARIMA
models. Let £;; be error processes corresponding
to X;+, and, for each ¢ fixed, g;; are independent,
i =1,2,---,pand ¢t = 1,2,---. Then covariance
matrix T = Vear(s:) can be estimated by sample
covariance matrix %Z?ﬂ gz L. I can prove that
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the sample covariance matrix converges to the co-
variance matrix X in probability.

According to the following theorem,

Theorem 3 (Anderson, Brons and Jensen, 1933)
If for a pair of square random matrices Pn, Qn,
(Pn.{dn) converges in distribution to (P, @}, where
(J is a.s. nonsinguiar, then the ordered solutions of
the generalized eigenvalue problem det(P, —AQ,) =
0 converge in distribution to the ordered solutions of
the generalized eigenvalue problem det(F—AQ2) = 0.

the eigenvalues of £ can be estimated by the eigen-
values of the sample covariance matrix

1 n
§ " -~ T
En e Eelt -
TL
=1

‘When n is large enough, if the rank of X, is less
than p, then based on the result showed in Sec-
tion 2, we can accept that Xy ., KXoy, ---, Xps 88
cointergated; if all the eigenvalues of £,, are signif-
icantly different from 0, then we can reject Xy,
Ao, -+, Xp¢ cointegrated; if some eigenvalues of
¥in are not significantly different from 0, then there
are two possibilities. One possibility is that X 4,
Xag, ---, Xp are not essentially cointegrated. The
other possibility is that X, ;, X5, -+, X ¢ are coin-
tegrated but, due to the effect of sample size or the
bias of ARIMA model fitting, the rank of &, is still
.

Here we are interested in the situation that some
eigenvalues of &, are not significantly different from
0, because we need to understand how to make a de-
cision if we can accept Xy, Xay, -+, Xpt cointe-
grated. In the following we replace £, by ¥ because
given a data set the sample size n is fixed. It is not

an important issue in the following discussion.
Consider Maodel (1) in Theorem 1 with a full rank

matrix var{ey) = L. Assume that the last r eigen-

values of £ are small enough to be negligible. Then

ap ¥
Vit U1t
ur uk
s = A% p—rit — (A A* it
£y = A F - (A'IJ“'&Q) *
vp——:r'—t—l Up—-?‘—}-l
B &
Up Up
e * E3 * *®
= Aiv(lj,t -+ 442V(2}tt‘
Thus

{1-B)YX: = C(B)'U?]‘},]‘ + Cl(B}U?:a),t‘

ie.

C(B) - CQ) «
Xo=Xo (- BSE Svy,
i==1

{3)

t
i=1

¢
+C(1) D vy +Cu(B) > Vi
=1

Since the rank of (1) is p — r, there is a vector &
such that £7C/(1) = 0 and

EVEy = T(Xg - Wo) + ETW,

[4
+ETCUB) D Vi s
pe=1

For given Xo and Wy, 91Xy — Wy) +
£TW, is stationary and the difference between
ETX, and £T(Xy — Wq) + TW, is evalu-
ated by §TC (B L v .. If the variance of
dmed U244

ETCHBY YL, iy I8 not significant large, it may
be reasonable to accept £7 X, as a stationary time
series, that is, Xy s accepted as coinfegrated.

To distinguish the above “cointegration” from
the exact defimition of cointegration, we call it as
“agymptotic cointegration”.

Since “asymptotic cointegration” relations are
not exact “cointegration” relation, the “cointerga-
tion” behaviours will be controlied by the factor of
101 (B) }:Zzl V{zy,;» Which, in fact, is significantly
affected by sample size. The important question is
how to measure the effect of £TC(B)S°, Vigy s
In this paper, we will indicate a partial answer
to the question and demonstrate the effect of
sTOUBY Y, Vig, via several examples. A de-
tailed study will appear in our another papers.

In this paper we use the value of the variance of
ETCB) T, Vi t0 measure the effect caused
by ETCH(E E vr. .. First we deduce a formula

¥ i=1 "(2)i

for evaluating the variance of Cy(5B) 37!
evaluate the variance of Cy({B) }:ﬁ:l "”(kz),iv the fol-
lowing notations are needed.

Let

=1 V{5 TO

e}

F{B) = dinB",

k=0
4 = 1,2, are polynomial functions of B, where B is
a back-shift operator. The inner product of f; and
fa is defined as

(JUB) f2(B)) = 3 érudos-
k=0

Sometimes (fi1(B), f2(B)) is briefly denoted as
(fl‘lf’l)'
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Now we consider (' (B) 2231 Vigs i (3). Let

H{B)=C|(B)Y{1+B+B*+ o B,

where the element h; ; of H(B) can be expressed as

oo g1
fiip = z 61k B> BY)
L= s=0

&

fom 1 o0 g
= Z(Z @i g6 ) B+ Z( z Gi5,6) B°.

s=0 A=l st k=gt ]

Thus cou(Cy (BY S8, Viay.3: C1{B) wal Vig) ) can
be expressed as (Z?_IMH (hi g, he,g)o}) where

(ht.JJ hk J - Z {Z ¢, gy (Z ¢l &, n

sz={l =0 n={

Z Z Bign){ Z binn)]

ms— b ni==g—i1

and Var(éTC,(B) me V{z),:) can be evaluated by

i

t
EX cov(Cy(B) Z ""fz),a: Ci(B) Z VFZ)J)&
=1

im=1

(4)

The foermula (4) can be used to estimate the effect
of ETCH(BY YL, Vigy;- Example 2 below shows the
connection between asymptotic cointegration and
the effect of €7CL(B) L1, viy,

Example 2 Assurae time series X; and Y; satisfy
the following model

XNe=Xpy +vr — (.29 4 (5)

}’} = ifgvl -+ \/5?)3 + Uy

t = 1,2,---,T, where vy ~ N(0,1) and u; ~

N{0,0%) with a small variance, and v, and u,; are
independent.

We express X, and ¥; as follow:

()
~c@ (),

erei( 2 )=(3 )

In this particular example, the eigenvalues of © are
! and ¢” and the matrix A (in the proof of Theo-
rem 1) is an identity matrix. By assuming that the

1-028 ¢
V2 1

(%)

where

variance for v is fairly small, we partition ¢ {B) as
two parts, C1(8B) and C2(B), that is
1—-0.2B8

o (5)=( o (1)

= Ci( By, + Co{ By

For C(B), we can determine a vector £ =
(1,-0.5657)7 such that £€¥C1(1) = 0. For this
vector £, the variance of the remaining term is eval-
uated as follows,

Var(£TCy(B) Zut) < Var(¢T Co(B) Z ;)

=1
= (0.32001649T .

It expects that, if 0.320016497 5 is smaller enough,
we shall be able to accepi that X; and ¥ are coin-
tegrated; if 0.32001649T ¢ is not small, the accep-
tance of cointegrated relationship between X, and
Y: becomes critical. This conclusion is confirmed
by the following simulating exampies.

In the following several data sets are simulated
from models (5} and (6) with different sample size
and different value of 0. We try to use the following
examples to indicate that the conclusion whether
Xt and Y} can be accepted as cointegrated within a
certain time period can be judged by the variance
of E7C1(B) DL, iy, 1

In the examples we also apply the Johansen’s pro-
cedure {by using PcGive package) to each data set.
The purpose of carrying out such practices is to use
the outputs as benchmarks.

In the following, firstly, we simulate data rom the
model; secondly make conclusion based on $he value
of variance §TC1(B) S°F_, Viay 5 then apply Johan-
son’s procedure to data; finally summarize the ex-
amples.

Example 3 We simulated several samples with
size 150, 950, 1000 and 2000 for o = 0.001 and a
sample with size 1000 for & = 0.01 from models (5)
and (6). The variance of

¢ T
Var(€7Ca(B) 3 ui) < Var(TCu(B) Y wi),
i=1 i=1

for each case, is bounded by 0.04800, 0.304, 0.3200,
0.6400 and 3.2002 respectively. Having a quick look
at these values. it expects that, for the first four
samples, X; and Y; are coinegrated. However, for
the last ane, there is a risk to accept that X, and
Y: are cointegrated. This conclusion is slightly dif-
ferent from the output of PcGive which indicates,
at the level of 0.05 % for all the cases, X; and ¥;
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are accepted as cointegrated under Johangen’s pro-
cedure although they are not in fact. The coin-
tegrating vectors are (1, —0.36369), (1, —0.56887},
(1,-0.55250), (1,-0.57223} and (1,-0.42799) re-
spectively. However after applying unit-root test to
these cointegrating vector, it turns out X, and ¥;
should not be cointegrated for the last case. It coin-
cides with the conclusion under the criterion glven
by this paper.

The following is an other example where x; and
yr are essentially cointegrated. However due model
fitting, sample and sample size, the sample covari-
ance matrix turns out to be a full rank matrix. In
this example we show how to use the procedure to
identify the cointegrating vector for z; and y,.

Example 4 In this example we simulate a sam-
ple {xy,y:) with size 1000 from the model given in
Example 1, where ¢ are independent normally dis-
tributed with mean 0 and variance 1.

Based on the sample, we fit the data by using the
following model

. . €1t
{1 — B)a; = —0.021331 + T 00074T1B

{1~ By, = —0.01701 + (1 — 0.201198)es,

{7)
(8)

and save residuals for each model. The estimate
of the covariance matrix coule ¢, €2,¢) I8 given by

sample covariance

with stgenvalues 1.949930 and 0.00002. Use eigen-
vectors to determine the matrix A* (mentioned the
proof of Theorem 1) and obtain
()
Uzt

€1, —

€2

where wvar{tis) = 1949930 and var{vy:) =
0.00002. Since the variance of vy is relatively

small, we may consider it as unimportant factor.

(19745578557

0.9746402982
.974602982

(.974770822

0.707068 0707145
0.707145 -0.707068

Thern we express the model as below

T ) _
Ui
'*'C_L(B)U‘a’f.

From C{1} = {0D.706540,0.564877)7 and a vector
& = {—0.798498,1) can be determined such that
ETC(1) = 0.

By applying the formula (4), we find that the
variance of €7CY (B) Tot_, w,; are reasonable small,
which is less than 0.0507 for 0 < ¢ < 1000. Thus,
from Theorem 2, for 0 < ¢t < 1000, it reasonable

( ~0.02131 ) + C(B)vs

(1=5) ( ~0.01701

to accept that €7{X, — Agt)= (—0.079948982, +
ye)—0.000027128¢ is stationary.
the conintegrating vector (—0.799498,1) obtained
in here is very close to the theoretical value (—0.8, 1)
given by Example 1 and the non random term only
makes a small amount of contribution .

As we can see

From this paper and examples, we can see the
remaining term in (3} plays important role in the
cointegration inference. Once the effect of the re-
maining term is precisely evaluated, it will give a
clear picture that how long period a cointegration
phenomenon, or, precisely say, asymptotic cointe-
gration phenomenon, can be lasted. This issue is
tmportant, especially when the cointegration rela-
tion is applied to forecasting. In this paper, we only
show the relation between the covariance matrix of
error process and conitegrasing vector(s), and the
role of the remaining term in (3). Several other in-
teresting questions still need to be answered. They
will be carried out in our subsequence papers.
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